Hierarchical Markovian Models for Hyperspectral Image Segmentation
نویسندگان
چکیده
Hyperspectral images can be represented either as a set of images or as a set of spectra. Spectral classification and segmentation and data reduction are the main problems in hyperspectral image analysis. In this paper we propose a Bayesian estimation approach with an appropriate hiearchical model with hidden markovian variables which gives the possibility to jointly do data reduction, spectral classification and image segmentation. In the proposed model, the desired independent components are piecewise homogeneous images which share the same common hidden segmentation variable. Thus, the joint Bayesian estimation of this hidden variable as well as the sources and the mixing matrix of the source separation problem gives a solution for all the three problems of dimensionality reduction, spectra classification and segmentation of hyperspectral images. A few simulation results illustrate the performances of the proposed method compared to other classical methods usually used in hyperspectral image processing.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملHierarchical markovian models for joint classification, segmentation and data reduction of hyperspectral images
Spectral classification, segmentation and data reduction are the three main problems in hyperspectral image analysis. In this paper we propose a Bayesian estimation approach which tries to give a solution for these three problems jointly. The data reduction problem is modeled as a blind sources separation (BSS) where the data are the m hyperspectral images and the sources are the n < m images w...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملRule-based Classification of a Hyperspectral Image Using Mssc Hierarchical Segmentation
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. In this paper, we propose to use spectral-spatial classifiers a...
متن کاملData Reduction of Hyperspectral Radio-astronomical Images for Galaxy Cluster Segmentation
This paper proposes a reduction-segmentation scheme for radioastronomical cubes. In order to avoid the curse of dimensionality phenomenon, a reduction technique is proposed as preprocessing step before classification. On each site of the image a spectrum is observed, exhibiting few spectral rays, modeled as a weighted mixture of selected Gaussian functions. These weights feed a Hierarchical Mar...
متن کامل